skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "He, Sheng-Yang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The plant immune response plays a central role in maintaining a well-balanced and healthy microbiome for plant health. However, insights into how the fruit immune response and the fruit microbiome influence fruit health after harvest are limited. We investigated the temporal dynamics of the fruit microbiota and host defense gene expression patterns during postharvest storage of apple fruits at room temperature. Our results demonstrate a temporal dynamic shift in both bacterial and fungal community composition during postharvest storage that coincides with a steep-decline in host defense response gene expression associated with pattern-triggered immunity. We observed the gradual appearance of putative pathogenic/spoilage microbes belonging to genera Alternaria (fungi) and Gluconobacter and Acetobacter (bacteria) at the expense of Sporobolomyces and other genera, which have been suggested to be beneficial for plant hosts. Moreover, artificial induction of pattern-triggered immunity in apple fruit with the flg22 peptide delayed the onset of fruit rot caused by the fungal pathogen Penicillium expansum. Our results suggest that the fruit immune response helps to orchestrate a microbiome and that the collapse of the immunity results in the proliferation of spoilage microbes and fruit rot. These findings hold implications for the development of strategies to increase fruit quality and prolong shelf life in fruits and vegetables. 
    more » « less
    Free, publicly-accessible full text available April 21, 2026